Tone Generation:

The tone is generated from the output of a DAC(Digital to Analog Converter). This DAC’s eight input ports are driven by P1. The DAC’s write line is driven by P3_7.

So, the DAC output is a voltage between 0 and 5V. This voltage is derived by this equation Vdac = 5*(P1/256).

The value of P1 is derived by summing up waveforms that are defined in the C source file. A waveform is an unsigned char [256]. This array contains the magnitudes at each of 256 locations on the wave. This can be better understood by looking at the C source file for the program. There are some arrays up top called sine, triangle, square, saw_tooth10, saw_tooth01.

A tone is generated by outputting values out of the one of these arrays. The frequency comes from the size of the step that we make through the array. For example, if our step size is two, then we pass through the wave once every 128 steps. We make a step every 256 clock cycles(when timer2 overflows). This is approximately 10,400 times per second. So, the frequency generated for a particular step size is:

f = 10,400*step_size/256.

These step sizes have a pretty rough granularity, so it is necessary to use the whole part of the number and then two or three decimal places. The whole part, and each of the decimal places is kept in separate unsigned char arrays of size 128(because our midi keyboard has 128 keys, one step for each key). The name of these arrays are: steps_whole, steps_dec1, steps_dec2, steps_dec3. When several waves are played simultaneously, the magnitudes of each needs to be divided by the number of waves that are playing. This is done in a variable called scale_factor. The scale_factor is calculated based on how many channels are being used in music_bottom at the beginning of each tne.

The processor is able to run four waves at once. It manages this by having four channels which can have waves assigned to them. It no wave is assigned to a particular channel then channels[i].voice = VOICE_UNDEF. Each channel also keeps track of its current position in the wave and its step id.

There are two music tasks:

music_top – this task calculates the next value that should be output to the DAC. It then writes this value to P1. It then checks if the tne has run out and if so, it signals music_bottom.

music_bottom – this task calculates the scale_factor, and the new step sizes for each one of the channels. Depending on which note is being played on that channel.

The decimal parts of steps are handled in the following way. There are ten arrays of size 10 in the code memory called: zero_tenth, one_tenth, two_tenth…nine_tenth. The zero_tenth array has 10 zeros. The one_tenth array has 9 zeros and one 1. The two_tenth array has 8 zeros and 2 ones. Etc. So, if the two_tenths array is traversed thousands of times, the average number generated per time will be 0.2 etc. So, by doing this, we can generate decimal steps. Please look at the code for a more detailed view of this process.

